
From Redux to Component-level State: Modernizing CMSX Architecture
Alex Kozik
December 19th, 2024

Table of contents
1: Introduction

1.1: Overview and Motivation
1.2: Phases of the project
1.3: Related Pull Requests

2: The Architecture before Component-level State
2.1: Redux Store

2.1.1: Redux Store Slices
2.1.2: Reducers
2.1.3: Connecting Components with the Redux Store

2.2: Data Classes and Serialization
2.3: Data Transfer and APIs

3: Remarks and Issues
3.1: The issues with the architecture before component-level state
3.2: Lazy Global State and why we decided against it
3.3: Takeaways

4: Component-level State architecture
4.1: New Data Classes
4.2: New Data Class Builders
4.3: New APIs

4.3.1: Utilities
4.3.2: New Endpoints
4.3.3: Wrappers for the new APIs
4.3.4: Using the new APIs

4.4: Loader
4.5: APIStatus
4.6: useAPI
4.7: Class components -> Function components
4.8: New Route for Staff
4.9: Statuses with Toastify

5: Optimizing `GetStudentCourseData`
6: Benchmarking
- 6.1: Intro
- 6.2: Setup
- 6.3: Old version statistics
- 6.4: New version statistics
- 6.5: Conclusions
7: Future Potential and Goals

7.1: Staff Functionality on the New UI
7.2: Automatically Generating Data Classes
7.3: Customizable UI

8: Summary
8.1: Final remarks
8.2: Thank you!

1: Introduction
1.1: Overview and Motivation
Over the past 2 semesters, I migrated the new UI from a Redux-facilitated global state architecture to a component-level state
architecture. We had four main goals with the project:

1.2: Phases of the project
Research phase (Jan - Late-Feb): During this phase, I researched the architecture of the frontend to figure out how all of the
different components interact with each other.

Planning phase (Late-Feb, Mid-March): During this time, I had already gathered significant insight into how the new UI works, and
was deciding between two possible approaches for improving the architecture - lazy global state and component-level state. I gave a
presentation on March 4th detailing my findings from the research phase, and received feedback from everyone about which
approach would be more optimal.

Implementation phase 1 (Mid-March - Early-May): After deciding to go with component-level state, I utilized my findings from the
previous two phases to migrate the new UI to component-level state. By the end of this phase, we had a good prototype for how the
new UI would with component state. However, it was far from perfect. The interface was glitchy, the backend was extremely
inefficient, and there were numerous bugs.

Implementation phase 2 (September): I continued to work on refining the PR.

Reviewing phase and release (October - Mid-November): Noah, Rohen, and Colin did an initial review of 2229. Since it was a
large PR, there were 200+ comments to address. During this time, I also fixed some bugs. so it took most over October and into
November to polish everything. We merged the PR in mid November and deployed it to production!

Further development phase (Mid November - Mid December): After the initial release of component state, we identified some
areas for improvement, such as an assignment overview builder, removing Redux form, removing SessionFactory , improving the
loader, and other things. We implemented these things and deployed them at the end of finals week.

1.3: Related Pull Requests

PR Name PR # Purpose Author

Component State
Architecture for React

#2229 Implement the majority of the component state architecture. This document
primarily focuses on this PR.

Alex

Rewrite Student
Course API

#2452 Make GetStudentCourseData more efficient, get rid of SessionFactory ,
implement assignment overview builders.

Alex &
Thomas

Remove Redux #2485 After merging 2229, the only part of the Redux store that was left was the form
slice. This PR removed that and made forms operate via component state.

Colin

Add Delay to Loader #2502 Students were complaining that the website seemed slower. This PR fixes that by
only making a spinner show up after an API request has been in progress for at
least 500 milliseconds.

Alex

1. Reducing the amount of data that is sent to the frontend on login
2. Ensuring that users see fresh data whenever they navigate to a new page
3. Improving the scalability of the frontend architecture, allowing for future work on the frontend
4. Reducing latency on the frontend

2: The Architecture before Component-level State
2.1: Redux Store
2.1.1: Redux Store Slices
Before implementing component-level state, the primary mechanism for storing data on the frontend was the Redux, store, which is
a collection of 6 "slices", as follows:

2.1.2: Reducers

Each slice has a corresponding reducer, which is a function of type reducer : Store × Action → Store that determines how frontend
actions affect the condition of a particular slice of the Redux store.

Action creators are used to modify the Redux store. Here's an example:

2.1.3: Connecting Components with the Redux Store
In order to "link up" a component with the Redux store, we define two methods:

Then, connect is used to apply mapStateToProps and mapDispatchToProps to the component

For example:

const rootReducer = combineReducers({
 privileges: privilegeReducer,
 status: statusReducer,

});
export const initialState: AppCentralState = {
 privileges: guestUserPrivileges,
 status:,

export function resetSessionAction(): SetSessionAction {
 return {
 type: SET_SESSION,
 session: new Session(),
 };
}

1. mapStateToProps , which "injects" parts of the Redux store into the props of the component
2. mapDispatchToProps , which "injects" action creators into the props of the component

class App extends React.Component {
....
}
const mapStateToProps = ({ }: AppCentralState) => { }

2.2: Data Classes and Serialization
Data transfer from the backend to the new UI works as follows:

Data class refers to a class that stores data to be sent to the frontend. In order to facilitate data transfer, the frontend and backend
have an isomorphic set data classes. For example:

To serialize data classes on the backend, we use a library called Jackson.

To deserialize JSON to TypeScript objects we use a library called Json2Typescript. The @JsonProperty decorator defines how a
property is deserialized, namely, what property name to look for in the JSON and what type to deserialize it to.

2.3: Data Transfer and APIs
SessionFactory has methods for constructing data class instances at every level of the tree.

Here's an example of an API

CMSXApiContext is a class that contains all functions that fetch data from the backend.

Here's how getSession is implemented

const mapDispatchToProps = (dispatch: any) => { }
export default connect(mapStateToProps,mapDispatchToProps)(App);

1. Java backend constructs a data class instance
2. Data class instance is serialized to JSON
3. JSON is sent to the frontend using HTTP
4. TypeScript frontend deserializes the JSON into a data class instance

@JsonObject('UserData')
export class UserData {
 @JsonProperty('netId', String)
 public netId: string = 'guest';
 @JsonProperty('firstName', String)
 public firstName: string = 'A';

}

public class UserData {
 private final String netId;
 private final String firstName;

....

@EndpointActionName ("apigetsession")
public class GetSession implements Endpoint {
 @ApiMethod(HttpMethod.GET)
 public ActionResult doGet((....) {
 SessionFactory sessionFactory = new SessionFactory(database, assignmentController, structs);
 Session session = sessionFactory.buildSession(principal);

 return ActionResult.json(session);
 }
}

export class CMSXApiContext {
public async getSession():
public async getStudentEmailPrefs():
....

}

Here, this._callEndpoint is a helper function, and the arguments are as follows:

public async getSession(): Promise<Session> {
 return this._callEndpoint(actions.getsession, RequestType.GET, {}, Session);
}

actions.getsession is the particular endpoint we want to access

RequestType.GET is the request type. It could also be POST
{} is the JSON object we send to the api

Session is the class to which we deserialize the JSON response

3: Remarks and Issues
3.1: The issues with the architecture before component-level state
When a user would log in, the entire session would be sent to the frontend after the App component mounts.

Session refers to the large collection of data encapsulating anything the user would need to see while using the website.

Issue 1 - Excessive Data Transfer - Upon experimenting, I found that the amount of data sent to the frontend upon login can easily
exceed 1,500+ lines of JSON, which is excessive, considering that the overview page only display basic information about courses
and assignments.

Issue 2 - Lack of Data Refreshing - Moreover, state refreshing was done very rarely, particularly only after actions like submitting
an assignment. And, even then, lot's of unnecessary data was sent upon refreshing.

Issue 3 - Lack of Scalability - Given this architecture, it would be very difficult to modify the data that is sent to the frontend, since
the structure of the Redux store is rigid and inflexible.

Issue 4 - Complex code - The code that deals with Redux is unnecessarily complex for our purposes.

3.2: Lazy Global State and why we decided against it
After finishing the research phase of this project, I had come up with two prototype designs and I had to decide which one to
implement. They were:

Lazy global state would be similar to the original state management architecture, but it would only load the parts of the
sessionData slice that were required.

Here is a diagram of how it would work:

We decided against this architecture because, although it would remedy the issue of sending unnecessary data to the frontend,
changing the structure of the Redux store to send more/different data would remain very difficult. Therefore, this approach would not
be scalable for future projects on the new UI.

Moreover, the code would become extremely complicated, as facilitating lazy state would require designing the data classes in a
way that would allow "emptiness", which is highly prone to bugs and would make debugging very difficult.

3.3: Takeaways
Initially, I was going to implement lazy global state. In fact, when I gave the presentation detailing the two approaches, everyone
except for Noah was in favor of lazy global state.

componentDidMount(): void {
 this.props.getSessionAction.bind(this)();
}

1. Lazy global state
2. Component-level state

However, after a long back and forth with Noah and Ryan, I became convinced that implementing a component-level state
architecture would be:

With this in mind, I began to implement component-level state.

1. Simpler
2. More maintainable
3. Less prone to bugs
4. More conducive to future projects on the new UI

4: Component-level State architecture
4.1: New Data Classes
In order to facilitate the sending of exactly the data we need on the frontend, I implemented some new data classes.

As with the other data classes, I implemented them in both Java (backend) and TypeScript (frontend) to facilitate serialization and
deserialization.

They are as follows:

AssignmentOverview
Contains basic information about an assignment that is displayed on the overview page.
Properties are

name : string

shortAssignmentName : string

dueDate : Date

type : number

status : AssignStatus

submittedString: : string

lateSubmissionsDue : Date | null

assignmentID : number

courseID : number

courseDisplayCode : string

isCurrent : boolean

weight : number | null

AssignmentOverviewExtended
A subclass of AssignmentOverview that also contains. It is used to send data about assignments on a course menu.
Properties are (in addition to those inherited from AssignmentOverview)

statistics : ScoreStatistics

score : number | null

slipDaysUsed : string

StudentAssignmentDataAndRegrades

Contains all data needed by an assignment menu page, which is all data about the assignment and all regrade data about
the assignment.
Properties are

studentAssignmentData : StudentAssignmentData

commentDownloadResponse : CommentDownloadResponse

CourseOverview
Contains basic information about a course that is displayed on the overview page and nav bar, such as

displayCode : string

courseName : string

courseID : number

isPastEnrollment : boolean

isStaffCourse : boolean

semester : Semester

SemesterOverview
Contains basic information about courses, grouped into a single semester
Typically used to represent a student's enrollments in courses during a past semester
Properties are

semester : Semester

courses : CourseOverview[]

HeaderData
Contains data that is required by the header
Properties are

netID: string

firstName: string

lastName: string

NavbarData

Contains data that is required by the nav bar
Properties are

currentSemester : Semester

courseOverviews : CourseOverview[]

isAdmin : boolean

CourseContent

Contains data that is required when viewing a course's content/categories
Properties are

categories: Category[]

courseDisplayCode: string

NavbarAndProfileData
Contains all data needed for the nav bar and header
Properties are

profileData: HeaderData

navbarData: GetNavbarDataResponse

GetOverviewResponse
Contains all data needed for the nav bar and header
Properties are

assignmentOverviews: AssignmentOverview[]

courseOverviews: CourseOverview[]

`StudentCourseDataResponse
Used to send data about a course to a course menu
Properties are

properties: Course

finalGrade: string | null

semester: Semester

announcements: Announcement[]

assignments: AssignmentOverviewExtended[]

totalStatistics: ScoreStatistics

totalScore: number | null

4.2: New Data Class Builders
Consider the following code from GetStudentCourseData

The problem here is that the constructor for AssignmentOverviewExtended takes 17 arguments, and we have to construct them all
before we pass them in. Moreover, some of them are nullable, so we have to wrap them in Optional<T> before passing them in.

To make this code less bug prone and easier to read, I implemented builder classes for AssignmentOverview and
AssignmentOverviewExtended .

Here is part of the builder class for AssignmentOverview

Here is part of the builder for AssignmentOverviewExtended

assignmentOverviewExtended.add(new AssignmentOverviewExtended(
 assignment.getName(),
 assignment.getNameShort(),
 Optional.of(assignment.getDueDate()),
 assignment.getAllowLate(),
 assignment.getType(),
 assignment.getStatus(),
 GetAssignmentsOverview.makeSubmittedString(assignment, student, database.em),
 Optional.ofNullable(assignment.getLateDeadline()),
 assignment.id,
 course.id,
 course.getCode(),
 true,
 assignment.getWeight(),
 stats,
 score,
 slipDaysUsed
));

public static class Builder {
 String name;
 String shortAssignmentName;

 public Builder withName(String name) {
 this.name = name;
 return this;
 }

 public Builder withShortAssignmentName(String shortAssignmentName) {
 this.shortAssignmentName = shortAssignmentName;
 return this;
 }

}

public static class Builder extends AssignmentOverview.Builder {
 private Optional<ScoreStatistics> statistics = Optional.empty();

 // Override methods from AssignmentOverview.Builder
 @Override
 public Builder withName(String name) {
 this.name = name;
 return this;
 }

A key thing to note here is that we are overriding each inherited method in order to change the return type from
AssignmentOverview.Builder to AssignmentOverviewExtended.Builder .

With these builders, the original code in GetStudentAssignmentData becomes

The .build() methods takes all of the arguments that have been accumulated in the builder and constructs an
AssignmentOverview object from them.

I also used AssignmentOverview.Builder to make the code cleaner in GetOverview . The result is a much cleaner, more
maintainable, and less error-prone approach to constructing AssignmentOverview and AssignmentOverviewExtended objects. By
using builder classes, we simplify the process of setting properties, handle optional arguments more gracefully, and make the code
more readable.

// New methods specific to AssignmentOverviewExtended
public Builder withStatistics(ScoreStatistics statistics) {
 this.statistics = Optional.of(statistics);
 return this;

}

....

AssignmentOverviewExtended.Builder assignmentBuilder = new
// Add the properties we know exist
AssignmentOverviewExtended.Builder()
 .withName(assignment.getName())
 .withShortAssignmentName(assignment.getNameShort())
 .withLateSubmissions(assignment.getAllowLate())

// Conditionally add properties that might not exist

if (assignment.getShowSlipDays()) {
assignmentBuilder.withSlipDaysUsed(....));

}

....

assignmentOverviews.add(assignmentBuilder.build());

4.3: New APIs
4.3.1: Utilities
In CMSXApiContext I implemented a new function _callEndpointGetArray , which works the same way as _callEndpoint ,
except it deserializes the response into a list of objects, rather than a singleton.

4.3.2: New Endpoints

I implemented the following endpoints as Java classes on the backend

Endpoint Serialized Return Type Description Parameters
GetCurrentSemester Semester Gets the current

semester
GetOverview GetOverviewResponse Gets all data needed for

the overview page
GetCourseContent GetCourseContentResponse Gets a course's content
GetNavbarAndProfileData NavbarAndProfileData Gets all data needed for

the nav bar and header
GetStudentAssignmentData StudentAssignmentData Sends information

about a specific
assignment

{courseid:
number,
assignid:
number}

GetStudentAssignmentDataAndRegrades StudentAssignmentDataAndRegrades Gets all information
about a particular
assignment and all
regrade information for
the assignment.

{courseid:
number,
assignid:
number}

GetCourseAnnouncements Announcement[] Sends a list of
announcements for a
course

{courseid:
number }

4.3.3: Wrappers for the new APIs
I built the following methods into CMSXApiContext as wrappers for the new APIs described above

Wrapper Endpoint
getCurrentSemester() GetCurrentSemester

getSemester() GetSemester

getOverview() GetOverview

getCourseContent() GetCourseContent

getNavbarAndProfileData() GetNavbarAndProfileData

getStudentAssignmentData() GetStudentAssignmentData

getStudentAssignmentDataAndRegrades() GetStudentAssignmentDataAndRegrades

getCourseAnnouncements() GetCourseAnnouncements

getStudentCourseData() GetStudentCourseData

Each wrapper method has roughly the same implementation. For example:

public async getCourseContent(courseid: number): Promise<CourseContentResponse> {
 return this._callEndpoint(
 actions.getcoursecontent,
 RequestType.GET,
 { courseid: courseid },
 CourseContentResponse,

4.3.4: Using the new APIs
New APIs can be used as follows:

And, in the case of a class the case of a class component, it looks like this

Originally, this is how we used the new APIs in 2229. However, there are two problems here

With these things in mind, I implemented a Loader component and a useAPI hook which solved these issues. They are discussed
in detail in sections 4.4, 4.5, and 4.6.

);
}

const Component = (props: ComponentProps) => {
const [data, setData] = useState<Data>(new Data())

useEffect(() => {
apiContext.getData()

.then(setData)

.catch(alert)
}, [])

return (....)
}

componentDidMount() {
apiContext.getData()

.then(data => {
this.setState({

data: data
})

})
.catch(alert)

}

1. This pattern uses a default "empty" value for data before the API call is finished. This is really bad because we don't want any
UI components to rely on this data.

2. This pattern does not take into consideration whether the API request is in progress, successful, or failed.

4.4: Loader
One of the big considerations with component-level state is that when a user navigates to a new page, the data they want will not
immediately be available to them, since the API takes some time to send the data. Therefore, we need a way to show the absence
of data until it is received by the frontend.

Some of the considerations with this are

I implemented the following React component for the loader

I utilized the loader in the following components:

1. We want it to be obvious to the user that there isn't any data, but there should be data.
2. We want it to be obvious to the user that progress is being made.
3. We want the design to be subtile, and not too distracting from the main content of the page.
4. Each page makes 1 API request upon loading.

export const Loader = ({ showLoader } : LoaderProps) => {
 if (showLoader) return (
 <div className="loader-container">
 <ClipLoader color={"gray"}
 size={75}
 />
 </div>

);
 return <></>;
}

CoursesSection

StudentAssignmentMenu

CourseDetails

BaseStudentAssignment

CourseContent

PastSemesters

GradingCommentsAndRegrades

StudentSurveyMenu

CurrentStudentAssignments

Navbar

4.5: APIStatus
One of the issues that came up was how we should handle missing data, for example, when we are unable to contact the backend.
To solve this problem, I drew inspiration from algebraic data types in OCaml. I wanted something like this:

Since TypeScript doesn't have a way to declare a sum type, like in OCaml, I made each constructor it's own type with a type field
to pattern match between them, then made APIStatus<T> the union of the three constructors.

There are three possible "constructors" for a value of type APIStatus<T> .

Each constructor also has a type field, which is a constant string. The type field allows us to pattern match over which constructor
we have.

For example

The result of this is a clean way to represent whether we have data, are trying to get data, or have failed to get data, without the
dangers of using null or undefined .

type 'a api_status =
| Loading of bool (* whether we should render the loader *)
| Failure of string (* the error message *)
| Success of 'a (* the data from the API *)

export type Loading = { type: 'Loading', showLoader: boolean };
export type Failure = { type: 'Failure', errors: string[] };
export type Success<T> = { type: 'Success'; value: T };
export type APIStatus<T> = Loading | Failure | Success<T>;

Loading indicates that there is no current data to display and we are still in the process of fetching the data. showLoader is
whether we should render the loading circle on the page.
Failure indicates that we tried fetching the data, but were unable to fetch it. the errors field has the list of errors from the
backend.
Success<T> indicates that we have successfully fetched data, and it is in the value field of the object.

const data: APIStatus<T> =;

if (data.type === 'Success') {
// data : Success<T>
const value: T = data.value;

}

else if (data.type === 'Loading') {
// data : Loading

}

else {
// data.type === 'Failure' implies data : Failure
const errors: string[] = data.errors;

}

4.6: useAPI
I also implemented a new React hook called useAPI . The purpose of this hook is to call an API and return an APIStatus<T> , then
update the APIStatus<T> in real-time as the status of the API call changes. useAPI also manages whether the loading overlay
should be rendered.

Here is the signature of useAPI

The return values are as follows

Here is an example usage of useAPI

Here is an example of how we use useAPI and Loader together to concisely implement a stateful component:

export function useAPI<T>(
 fetchFunction: () => Promise<T>,
 onSuccess?: (result: T) => void,
 showErrorMessage: boolean = true,
 loaderDelay: number = 500
): [APIStatus<T>, () => void]

fetchFunction is the method that calls the API wrapper. It must return a Promise<T> , where T is the data type we ultimately
want to receive.
onSuccess is an optional parameter. It is a callback function that will be applied to the data of type T whenever a successful
API request occurs.
showErrorMessage is an optional parameter. If an API request fails and showErrorMessage is true , a toast will be displayed
with the error message (this is why we track errors in APIStatus<T>).
loaderDelay is an optional parameter. Initially, we don't want to show a loading overlay. However, after loaderDelay
milliseconds, we do want to show a loading overlay. So initially, the value of the data returned from useAPI will be a Loading
object with showLoader equal to false . useAPI will set a timeout for loaderDelay milliseconds, and, if by the time the
callback function executes, the API request is still in progress, useAPI will set the data to Loading with showLoader equal to
true . The TLDR is that loaderDelay is how long we want to wait before displaying a loader.

The 0-index element is an APIStatus<T> that represents the status of the API request. It will be modified in real time as
updates are made to the API request.
The 1-index element is a function that, when called, will call fetchFunction and update the 0-index element accordingly.

const Overview: React.FC = () => {
 const [data, fetchData] = useAPI(() => apiContext.getOverview())

....
};

const Overview: React.FC = () => {
 const [data] = useAPI(() => apiContext.getOverview())

 if (data.type === 'Failure') return (

 /* Render a failure message */
)

 if (data.type === 'Loading') return (
 <Loader showLoader={data.showLoader}/>
);

 return (

 /* The actual content of the page */
)
};

Here, data is of type APIStatus<T> and fetchData is a function that recalls the API, and updates data accordingly.

This is now the general pattern that is used to implement stateful components on the new UI.

In a more complex component like StudentAssignmentMenu , we can leverage the fetchData return value as follows

Overall, having useAPI significantly reduces boilerplate, and is a concise way to call APIs and use their data.

const StudentAssignmentMenu: React.FC<Props> = ({ }) => {
const [data, fetchState] = useAPI(() =>));
const declineGroupInvite = (... .) => {

 apiContext.declineGroupInvite(groupid)
 .then(() => {
 toast.success("Declined invitation");
 fetchState();
 })
 .catch(toast.error);

};
... .

}

4.7: Class components -> Function components
In the old version of the new UI, we had class components. Some of the issues with class components are

So, I refactored all class components to be function components. There were about 10 to do.

The main benefits of this are

1. Verbose syntax
This makes class components harder to read and maintain

2. Complex state management using lifecycle methods
componentDidMount

componentDidUpdate

componentWillUnmount

this.setState({ })

3. The this keyword can be confusing
The need to bind methods to the component instance (this) can lead to confusion and bugs.

4. Class components cannot use API hooks
This is a big problem

1. We now have a simpler syntax for React components, which makes them easier to read and understand.
2. Function components can use React hooks, which allows us to use the useAPI hook. This greatly simplifies making API

requests and state management.

4.8: New Route for Staff
When a user clicks on a course link, one of two things happens

Performing one of these two actions requires knowing whether the user is a student or staff in the course.

The way the CourseMenu component handled this before component-level state is as follows

This kind of approach would no longer work with component-level state because the CourseMenu component would not immediately
know whether the user is a student or staff in the course, at the time of rendering.

I solved this issue by implementing a new route in App as follows:

Upon connecting to this URL, StaffCourseMenu renders, which redirects the user to the course page on the classic UI.

I then made links in Navbar and CourseSection redirect to /staff/:id when the user is a staff in the course.

The result is a seamless way to redirect to the classic UI for staff courses without CourseMenu needing to fetch any data at all.

1. If they are a student, they are brought to the course menu on the new UI
2. If they are a staff, they are redirected to the course menu on the classic UI

render() {
const course = this.lookupCourseById(courseid);
/* */
if (isStaffCourse) return <StaffCourseMenu />;
else return <StudentCourseMenu />;
/* */

}

<Route
 path={'/staff/:id'}
 exact
 render={(props) => {
 if (
 props.match.params.id !== undefined &&
 isPositiveInteger(props.match.params.id)
) {
 this.setActivePage(Page.COURSE);
 return (
 <StaffCourseMenu
 courseid={parseInt(props.match.params.id)}
 />
);
 } else
 return (
 <div className="content">
 <h2>Error: Invalid Course id</h2>
 </div>);
 }}
/>

4.9: Statuses with Toastify
In order to facilitate a more interactive user experience, Noah and I replaced alert with Toastify, a status library. Here's an example
of how we can use Toastify:

Here a success message is shown if the the Promise resolves, and an error message is shown if the Promise rejects.

const submitRegradeFromForm = (text: string, problems: number[]) => {
 apiContext.postStudentRegradeRequest(assignid, text, problems)
 .then(() => {
 toast.success("Regrade request posted");
 fetchState();
 })
 .catch(toast.error);

};

5: Optimizing GetStudentCourseData
We previously had a class - SessionFactory which would construct a Session object to send to the frontend. This Session
object would contain all information the client would ever need to know. As described in section 2, this is the basis of how our Redux-
facilitated framework used to operate.

However, a few days before merging #2229, we realized that the GetStudentCourseData API was utilizing SessionFactory to
construct StudentCourseData object as follows:

Here, StudentCourseDataResponse is defined as

There are two main issues with the above implementation of GetStudentCourseData

factory.builderStudentCourseData constructs the StudentCourseData object.

I addressed this PR by redesigning StudentCourseDataResponse to be

AssignmentOverviewExtended is a new data class. It contains the information about an assignment that we need to know in a
student course menu. The reason that AssignmentOverview didn't suffice here is because it doesn't contain

@EndpointActionName (RequestAction.API.General.GET_STUDENT_COURSE_DATA)
public class GetStudentCourseData implements Endpoint {
 @ApiMethod (HttpMethod.GET)
 public ActionResult doGet(....) {

 SessionFactory factory = new SessionFactory(....);

 return ActionResult.json(new StudentCourseDataResponse(semester,
factory.buildStudentCourseData(user, course)));
 }

....
}

private static class StudentCourseDataResponse {
 public Semester semester;
 public StudentCourseData studentCourseData;
 public StudentCourseDataResponse(....) { }
}

1. A lot of the data in StudentCourseData is not needed on a student course menu. So, this API was resulting in a lot of latency
when trying to visit the page.

2. We don't want to use SessionFactory anymore, since follows the old pattern of constructing Session objects.

private static class StudentCourseDataResponse {
 public CourseProperties properties;
 public String finalGrade;
 public Semester semester;
 public List<AnnouncementProperties> announcements;
 public List<AssignmentOverviewExtended> assignments;
 public ScoreStatistics totalStatistics;
 public Float totalScore;
 public StudentCourseDataResponse(....) { }
}

1. What the student got on the assignment, if it was graded already
2. The scoring statistics of the assignment
3. The number of slip days used for the assignment

AssignmentOverviewExtended includes these additional three properties. In order to make creating an
AssignmentOverviewExtended more efficient, I implemented builder classes for AssignmentOverview and
AssignmentOverviewExtended . There are more details about the implementations of the data classes and the builders in sections
4.1 and 4.2.

6: Benchmarking
6.1: Intro
In the following experiment, we compare latencies and response sizes between the old and new versions of CMSX. The new version
is our develop branch after merging #2229. The old version our develop branch at commit
5f23a5b0fe7c1c5967f9cc924c3195fcf60ba86e .

All assignment specific actions were performed in the course CS 6110

6.2: Setup
Two courses

Server: Dev-5
Client location: Cornell University West Campus

6.3: Old version statistics

These are the only things I tested because there is 0 latency across the rest of the website. This is because all of the data is already
stored in the session.

6.4: New version statistics

6.5: Conclusions
In the old version, it takes 173ms to load overview. In the new version, it takes 51 ms to load overview. This is a 71% decrease in
latency!

In the old version, it 1007 kb are sent from the backend when loading the page. In the new version, 13 kb are sent from the backend
when loading the page. This is a 99% decrease in response size!

CS 6110
20 assignments
A ton of course content

CS 6120
5 assignments

Time to load - average of 20
173 ms

Size of network requests to load
1007kb

Time to load overview - average of 10
51 ms

Size of network requests to load overview - always the same
13 kb

Time to load course - average of 10
101.9 ms

Time to load assignment - average of 10
24.6 ms

Time to load course content - average of 10
70.3

7: Future Potential and Goals
7.1: Staff Functionality on the New UI
Originally, my proposal for my CS 4999 project was to migrate grading from the classic UI to the new UI, which we quickly realized
was too large of a project for one semester. However, the primary reason this was such an ambitious goal was because, at the time,
our frontend didn't yet support the architecture necessary for this project.

Now that component-level state is implemented, modifying the data that is sent to the frontend is much simpler, and, therefore, staff
functionality on the new UI becomes a feasible project.

7.2: Automatically Generating Data Classes
Data transfer from the backend to the new UI works as follows:

This architecture requires that the data class instance is written twice - once in Java, and once in TypeScript. One enhancement I'd
like to see in the future is a way to write the data class once and have it translated to both languages. This would reduce the
probability of misalignments between the two languages and decrease the amount of code we have to write.

One possible approach for this would be AutoValue, which is a library for generating source code for value objects or value-typed
objects - https://www.baeldung.com/introduction-to-autovalue.

7.3: Customizable UI
In the future, I'd like to implement UI customizability, like a dark mode. User preferences could be stored on the backend, and there
would be a menu for toggling between different color schemes/layouts.

1. Java backend constructs a data class instance
2. Data class instance is serialized to JSON
3. JSON is sent to the frontend using HTTP
4. TypeScript frontend deserializes the JSON into a data class instance

https://www.baeldung.com/introduction-to-autovalue

8: Summary
8.1: Final remarks
Working on this project has been very challenging, enlightening, and, above all, rewarding. I entered Spring 2024 having a good
foundation of React knowledge, but knowing little about how the new UI works. I had to spend the first 1.5-2 months of the semester
researching how the frontend works, trying to understand the architecture.

In the beginning of the Spring 2024, migrating the new UI to component-level state seemed like an awesome idea, but I didn't even
know where to start. By the end of the semester, we had a working beta version of it.

After not working on the project for a couple of months, I resumed in September and worked on it for the entirety of Fall 2024. The
most difficult part of this project were the 3 weeks leading up to the merging and deployment to production, since I wanted to make
sure that the code would perform with thousands of users.

After merging the project, it was amazing to see it working in production. It was so satisfying to see months of work come to fruition
and positively impact the daily lives of our fellow students.

8.2: Thank you!
I'd like to thank the following people for their contributions to implementing component state, as this project would not have been
possible without them:

Professor Myers
Reviewed #2229
Reviewed #2452

Noah
Reviewed #2229
Helped fix bugs and upgrade dependencies in #2229
Reviewed #2452

Ryan
Implemented backend endpoints, which were merged into #2229

Colin
Reviewed #2229
Removed Redux form

Rohen
Reviewed #2229

Thomas
Reviewed #2229
Reviewed and helped implement #2452

The CMSX team
Helping test #2229 in a prod environment before merging!

